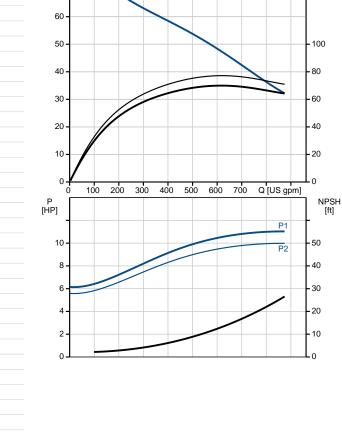


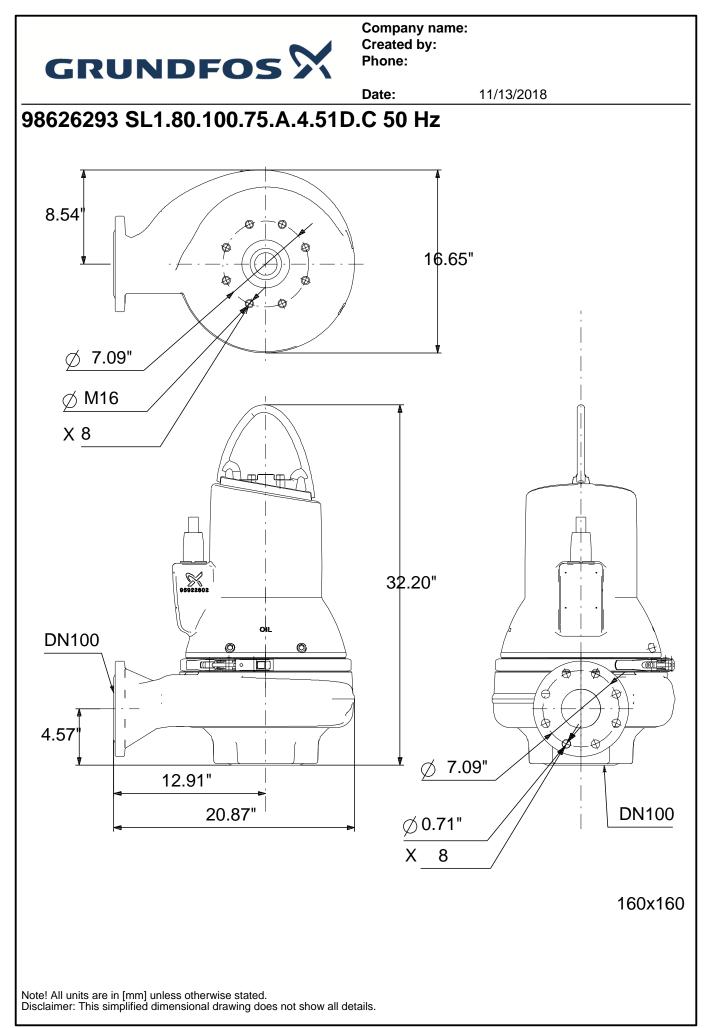
Type of impeller:	S-TUBE
Maximum particle size:	3 1/8 in
Primary shaft seal:	SIC/SIC
Secondary shaft seal:	CARBON/CERAMICS
Approvals on nameplate:	CE, EN12050-1
Curve tolerance:	ISO9906:2012 3B2
Materials:	
Pump housing:	Cast iron (EN-GJL-250)
	EN-GJL-250
Impeller:	Cast iron (EN-GJL-250)
	EN-GJL-250
Motor:	EN-GJL-250
hand a lite of a se	
Installation:	
Maximum ambient temperature:	
Flange standard:	DIN
Pump inlet:	100
Pump outlet:	100
Pressure stage:	PN 10
Maximum installation depth:	65.62 ft
Frame range:	D

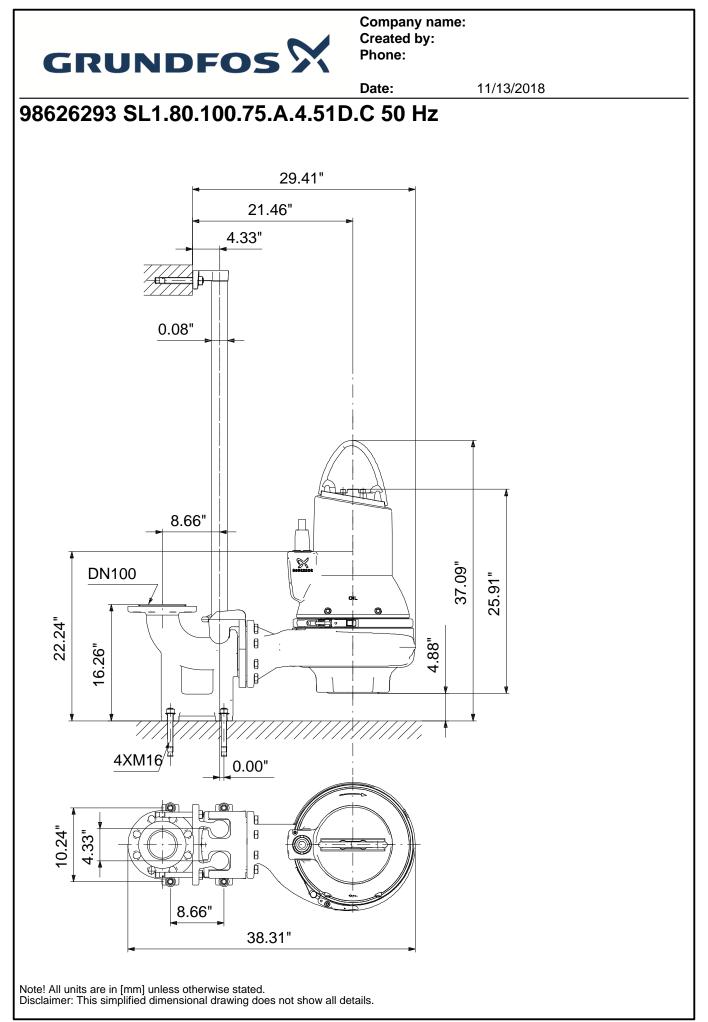
Company name: Created by: Phone:

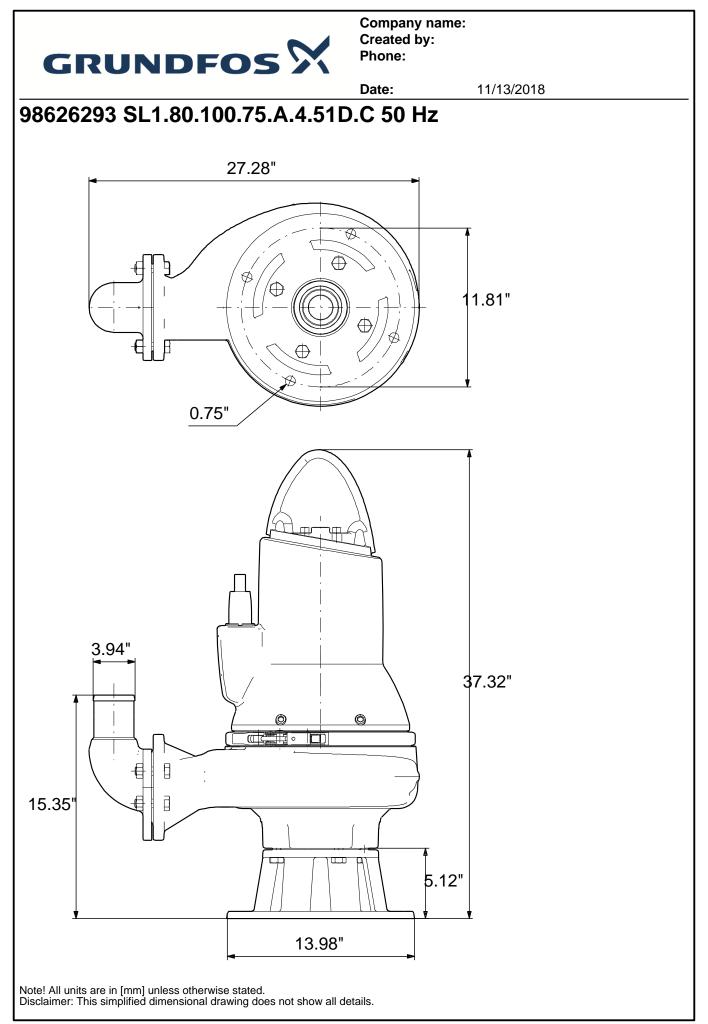

escription lectrical data: ower input - P1: ated power - P2: lain frequency: ated voltage: oltage tolerance: lax starts per. hour: ated current: tarting current: os phi - power factor: os phi - p.f. at 3/4 load: os phi - p.f. at 1/2 load: ated speed: lotor efficiency at full load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): sulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin: ustom tariff no.:	8.4 kW 10 HP 50 Hz 3 x 380-415 V +10/-10 % 20 15.1-14.4 A 111 A 0.83 0.78 0.68 1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU 84137021	
ower input - P1: ated power - P2: lain frequency: ated voltage: oltage tolerance: lax starts per. hour: ated current: tarting current: os phi - power factor: os phi - p.f. at 3/4 load: os phi - p.f. at 1/2 load: ated speed: lotor efficiency at 1/2 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): sulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	10 HP 50 Hz 3 x 380-415 V +10/-10 % 20 15.1-14.4 A 111 A 0.83 0.78 0.68 1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
ated power - P2: lain frequency: ated voltage: oltage tolerance: lax starts per. hour: ated current: tarting current: os phi - power factor: os phi - p.f. at 3/4 load: os phi - p.f. at 1/2 load: ated speed: lotor efficiency at full load: lotor efficiency at 3/4 load: lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): isulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	10 HP 50 Hz 3 x 380-415 V +10/-10 % 20 15.1-14.4 A 111 A 0.83 0.78 0.68 1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
lain frequency: ated voltage: oltage tolerance: lax starts per. hour: ated current: tarting current: os phi - power factor: os phi - p.f. at 3/4 load: os phi - p.f. at 1/2 load: ated speed: lotor efficiency at full load: lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): sulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	50 Hz 3 x 380-415 V +10/-10 % 20 15.1-14.4 A 111 A 0.83 0.78 0.68 1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
ated voltage: oltage tolerance: lax starts per. hour: ated current: tarting current: os phi - power factor: os phi - p.f. at 3/4 load: os phi - p.f. at 1/2 load: ated speed: lotor efficiency at full load: lotor efficiency at 3/4 load: lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): sulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	3 x 380-415 V +10/-10 % 20 15.1-14.4 A 111 A 0.83 0.78 0.68 1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
oltage tolerance: lax starts per. hour: ated current: tarting current: os phi - power factor: os phi - p.f. at 3/4 load: os phi - p.f. at 1/2 load: ated speed: lotor efficiency at full load: lotor efficiency at 3/4 load: lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): sulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	+10/-10 % 20 15.1-14.4 A 111 A 0.83 0.78 0.68 1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
lax starts per. hour: ated current: tarting current: os phi - power factor: os phi - p.f. at 3/4 load: os phi - p.f. at 1/2 load: ated speed: lotor efficiency at full load: lotor efficiency at 3/4 load: lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): isulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	20 15.1-14.4 A 111 A 0.83 0.78 0.68 1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX	
ated current: tarting current: os phi - power factor: os phi - p.f. at 3/4 load: os phi - p.f. at 1/2 load: ated speed: lotor efficiency at full load: lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): isulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	15.1-14.4 A 111 A 0.83 0.78 0.68 1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
tarting current: os phi - power factor: os phi - p.f. at 3/4 load: os phi - p.f. at 1/2 load: ated speed: lotor efficiency at full load: lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): isulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	111 A 0.83 0.78 0.68 1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
os phi - power factor: os phi - p.f. at 3/4 load: os phi - p.f. at 1/2 load: ated speed: lotor efficiency at full load: lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): isulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	0.83 0.78 0.68 1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
os phi - p.f. at 3/4 load: os phi - p.f. at 1/2 load: ated speed: lotor efficiency at full load: lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): sulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	0.78 0.68 1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
os phi - p.f. at 1/2 load: ated speed: lotor efficiency at full load: lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): sulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	0.68 1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
ated speed: lotor efficiency at full load: lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): sulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	1462 rpm 90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
lotor efficiency at full load: lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): sulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	90.5 % 91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
lotor efficiency at 3/4 load: lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): usulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	91.1 % 90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
lotor efficiency at 1/2 load: umber of poles: tart. method: nclosure class (IEC 34-5): isulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	90.7 % 4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
umber of poles: tart. method: nclosure class (IEC 34-5): isulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	4 star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
tart. method: nclosure class (IEC 34-5): isulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	star/delta IP68 H no 33 ft LYNIFLEX 435 lb HU	
nclosure class (IEC 34-5): isulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	IP68 H no 33 ft LYNIFLEX 435 lb HU	
sulation class (IEC 85): xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	H no 33 ft LYNIFLEX 435 lb HU	
xplosion proof: ength of cable: able type: thers: et weight: ountry of origin:	no 33 ft LYNIFLEX 435 lb HU	
ength of cable: able type: thers: et weight: ountry of origin:	LYNIFLEX 435 lb HU	
thers: et weight: ountry of origin:	435 lb HU	
et weight: ountry of origin:	HU	
et weight: ountry of origin:	HU	
ountry of origin:	HU	
ustom tariff no.:	84137021	

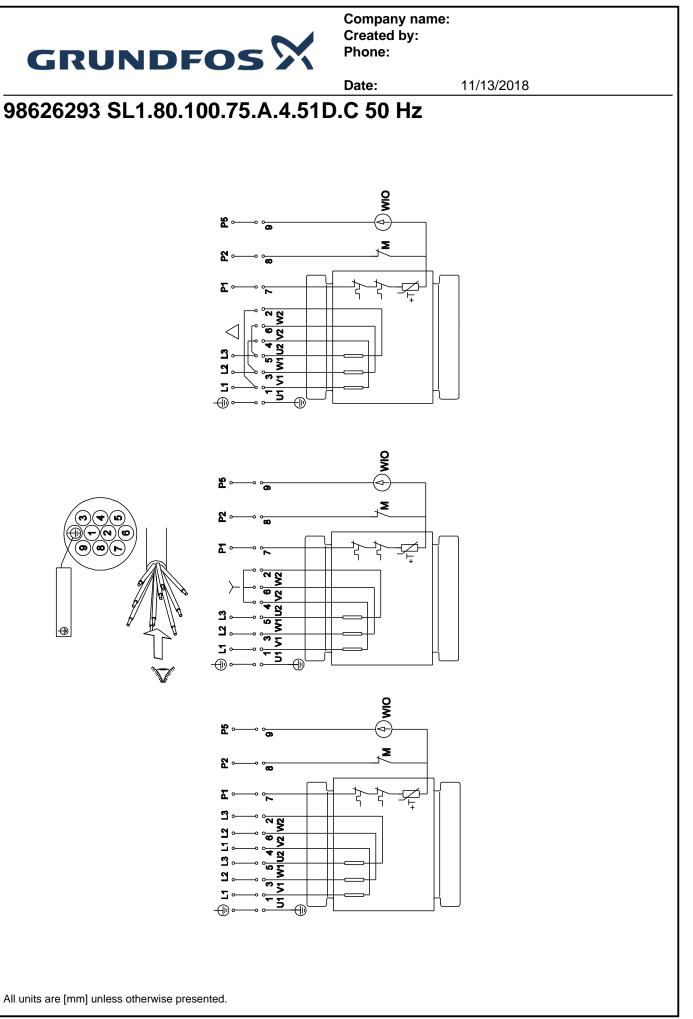
Company name: Created by: Phone:

Description	Value	H [ft]	SL1.80.100.75.A.4.51D.C, 3*400 V,
General information:			
Product name:	SL1.80.100.75.A.4.51D.C		
Product No.:	98626293	90 -	
EAN:	5711498469792	- N I	
Technical:		80 -	
Max flow:	872 US gpm	- I N	
Head max:	87.93 ft	70 -	
Type of impeller:	S-TUBE		
Maximum particle size:	3 1/8 in	60 -	
Primary shaft seal:	SIC/SIC		
Secondary shaft seal:	CARBON/CERAMICS	50 -	
-		40 -	
Approvals on nameplate:	CE, EN12050-1	40 -	
Curve tolerance:	ISO9906:2012 3B2	30 -	
Cooling jacket:	without cooling jacket		
Materials:		20-	
Pump housing:	Cast iron (EN-GJL-250)		
	EN-GJL-250	10-	
Impeller:	Cast iron (EN-GJL-250)		
	EN-GJL-250	0	
Motor:	EN-GJL-250	0 100 P	200 300 400 500 600 700 Q'[US g
Installation:		[HP]	
Maximum ambient temperature:	104 °F		P
Flange standard:	DIN	10 -	
Pump inlet:	100		P
Pump outlet:	100	8-	
Pressure stage:	PN 10	6-	
Maximum installation depth:	65.62 ft	ů	
Inst dry/wet:	SUBMERGED	4 -	
Installation:	Vertical	2 -	
Frame range:	D	2-	
Liquid:		0	
Pumped liquid:	any viscous fluid		
Maximum liquid temperature:	104 °F		
Density:	62.29 lb/ft ³		
Electrical data:	02.23 10/11		
Power input - P1:	8.4 kW		
•			
Rated power - P2:	10 HP		
Main frequency:	50 Hz		
Rated voltage:	3 x 380-415 V		
Voltage tolerance:	+10/-10 %		
Max starts per. hour:	20		
Rated current:	15.1-14.4 A		
Starting current:	111 A		
Cos phi - power factor:	0.83		
Cos phi - p.f. at 3/4 load:	0.78		
Cos phi - p.f. at 1/2 load:	0.68		
Rated speed:	1462 rpm		
Motor efficiency at full load:	90.5 %		
Motor efficiency at 3/4 load:	91.1 %		
Motor efficiency at 1/2 load:	90.7 %		
Number of poles:	4		
Start. method:	star/delta		
Enclosure class (IEC 34-5):	IP68		
Insulation class (IEC 85):	H		
Explosion proof:	no		
Motor protection:	Pt1000		
Length of cable:	33 ft		
Cable type:	LYNIFLEX		




eta [%]




Company name: Created by: Phone:

		Date:	11/13/2018
Description	Value		
Controls:			
Control box:	not included		
Moisture sensor:	with moisture sensors		
Water-in-oil sensor:	with water-in-oil sensor		
Others:			
Net weight:	435 lb		
Country of origin:	HU		
Custom tariff no .:	84137021		

